Final Exam - Review 1 - Problems

Peyam Ryan Tabrizian

Monday, May 2nd, 2011

1 Graphing

Problem 1: Graph $y=e^{\frac{1}{x}}$

2 Limits

Problem 2: Evaluate the following limits
(a) $\lim _{x \rightarrow \infty} \frac{\tan \left(\frac{1}{x}\right)}{x}$
(b) $\lim _{x \rightarrow 0} x^{3} \sin \left(\frac{1}{x}\right)$
(c) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}$
(d) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x+9}$
(e) $\lim _{x \rightarrow 3} \frac{x^{2}-6 x+9}{x^{2}-4 x+3}$
(f) $\lim _{x \rightarrow \infty} \frac{x^{2}-6 x+9}{x^{2}-4 x+3}$
(g) $\lim _{x \rightarrow-\infty} x^{2} e^{2 x}$
(h) $\lim _{x \rightarrow 0}\left(e^{x}+x\right)^{\frac{1}{x}}$

3 Derivatives

Problem 3

Using the definition of the derivative, show that the derivative of \sqrt{x} is $\frac{1}{2 \sqrt{x}}$

Problem 4

Show that $f(x)=x \sin \left(\frac{1}{x}\right)$ is not differentiable at 0 .

Problem 5: Find the derivatives of the following functions:
(a) $f(x)=\ln (\cos (\sin (\tan (\pi x))))$
(b) The $42^{n d}$ derivative of $f(x)=e^{2 x}$
(c) The equation of the tangent line to $y^{3}=x^{4}+8 y-9$ at $(1,2)$
(d) $f(x)=x^{\cos (x)}$

4 Linear approximations

Problem 6

Use a linear approximation to estimate $\tan \left(\frac{\pi}{4}+0.01\right)$

5 Mean Value Theorem

Problem 7

Show that $x^{4}-5 x-1=0$ has at most one zero in $[0,1]$

Problem 8

If $f(1)=10$ and $f^{\prime}(x) \geq-1$ for all x, what is the smallest possible value of $f(5)$?

6 Related rates

Problem 9

A cylindrical gob of goo is undergoing a transformation in which its height is decreasing at a rate of $1 \mathrm{~cm} / \mathrm{s}$ while its volume is decreasing at the rate of 2π $\mathrm{cm}^{3} / \mathrm{s}$ (It retains its cylindrical shape while all of this is happening). If, at a given instant, its volume is $24 \pi \mathrm{~cm}^{3}$ and its height is 6 cm , determine whether its radius is increasing or decreasing at that instant, and at what rate.

7 Max-Min / Optimization

Problem 10

Find the absolute maximum and minimum of $f(x)=x-3 x^{\frac{2}{3}}$ on $[-1,27]$

Problem 11

Find the point(s) on the parabola that is (ar) closest to the point $\left(0, \frac{1}{2}\right)$

