Final Exam - Review 1 - Problems

Peyam Ryan Tabrizian

Monday, May 2nd, 2011

1 Graphing

Problem 1: Graph $y = e^{\frac{1}{x}}$

2 Limits

Problem 2: Evaluate the following limits

- (a) $\lim_{x\to\infty} \frac{\tan(\frac{1}{x})}{x}$
- (b) $\lim_{x\to 0} x^3 \sin\left(\frac{1}{x}\right)$
- (c) $\lim_{x \to -\infty} \frac{x}{\sqrt{x^2+1}}$
- (d) $\lim_{x \to 9} \frac{\sqrt{x}-3}{x+9}$
- (e) $\lim_{x \to 3} \frac{x^2 6x + 9}{x^2 4x + 3}$
- (f) $\lim_{x \to \infty} \frac{x^2 6x + 9}{x^2 4x + 3}$
- (g) $\lim_{x \to -\infty} x^2 e^{2x}$
- (h) $\lim_{x \to 0} (e^x + x)^{\frac{1}{x}}$

3 Derivatives

Problem 3

Using the definition of the derivative, show that the derivative of \sqrt{x} is $\frac{1}{2\sqrt{x}}$

Problem 4

Show that $f(x) = x \sin(\frac{1}{x})$ is **not** differentiable at 0.

Problem 5: Find the derivatives of the following functions:

- (a) $f(x) = \ln(\cos(\sin(\tan(\pi x))))$
- (b) The 42^{nd} derivative of $f(x) = e^{2x}$
- (c) The equation of the tangent line to $y^3 = x^4 + 8y 9$ at (1, 2)
- (d) $f(x) = x^{\cos(x)}$

4 Linear approximations

Problem 6

Use a linear approximation to estimate $\tan(\frac{\pi}{4} + 0.01)$

5 Mean Value Theorem

Problem 7

Show that $x^4 - 5x - 1 = 0$ has at most one zero in [0, 1]

Problem 8

If f(1) = 10 and $f'(x) \ge -1$ for all x, what is the smallest possible value of f(5)?

6 Related rates

Problem 9

A cylindrical gob of goo is undergoing a transformation in which its height is decreasing at a rate of 1 cm/s while its volume is decreasing at the rate of $2\pi \text{ } cm^3/s$ (It retains its cylindrical shape while all of this is happening). If, at a given instant, its volume is $24\pi \text{ } cm^3$ and its height is 6 cm, determine whether its radius is increasing or decreasing at that instant, and at what rate.

7 Max-Min / Optimization

Problem 10

Find the absolute maximum and minimum of $f(x) = x - 3x^{\frac{2}{3}}$ on [-1, 27]

Problem 11

Find the point(s) on the parabola that is (ar) closest to the point $(0, \frac{1}{2})$